Worksheet for Sections 9.7 and 9.8

- 1. (a) In order to use the Alternating Series Test for a given series $\sum_{n=1}^{\infty} c_n$, what properties must the terms c_n of the series have?
 - (b) It is a fact that $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$. Find the smallest positive integer j > 0 for which the

Alternating Series Test guarantees that $\sum_{n=0}^{j} \frac{(-1)^n}{2n+1}$ differs from $\pi/4$ by less than 0.001.

- 2. Suppose $\sum_{n=0}^{\infty} a_n 3^n$ converges.
 - (a) Find $\lim_{n\to\infty} (a_n 3^n)$, giving reasons.
 - (b) Prove that $\sqrt[n]{a_n} \leq 1/3$ for all large values of n. (First show that $\sqrt[n]{a_n} \leq 1/3$ if and only if $\sqrt[n]{a_n 3^n} \leq 1$, and then use the Ratio or Root Test, whichever applies.)
- 3. Suppose the radius of convergence of $\sum_{n=0}^{\infty} a_n x^n$ is precisely 4. Which of the following numbers is necessarily in the interval of convergence, and why?

(a)
$$3.9$$
 (b) 4.1 (c) -3 (d) -5

- 4. (a) Write down the power series for $\frac{1}{1-x}$, and tell why the radius of convergence is 1.
 - (b) Use the fact that $\frac{d}{dx}\left(\frac{1}{1-x}\right)$ is $\frac{1}{(1-x)^2}$ to find the power series for $\frac{1}{(1-x)^2}$. Then determine the radius of convergence both by using the Ratio Test and by citing the Differentiation Theorem for power series.

(c) Evaluate
$$\sum_{n=1}^{\infty} n\left(\frac{1}{2}\right)^{n-1}$$
. (*Hint:* The series found in (b) might be helpful.)

5. (if time)

- (a) Write the power series for e^x , and then explain why $xe^x = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n!}$.
- (b) By integrating the power series for xe^x , show that $\sum_{n=0}^{\infty} \frac{1}{(n+2)n!} = \int_0^1 xe^x dx = 1.$