Worksheet for Sections 9.7 and 9.8
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1. (a) In order to use the Alternating Series Test for a given series Z cn, what properties must the

n=1
terms ¢, of the series have?
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(b) It is a fact that ngo Q(n—l—)l = % Find the smallest positive integer j > 0 for which the
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Alternating Series Test guarantees that Z differs from 7 /4 by less than 0.001.
n=0
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2. Suppose Z an 3" converges.

n=0
(a) Find lim,_,o(ap3"), giving reasons.

(b) Prove that {/a, < 1/3 for all large values of n. (First show that {/a, < 1/3 if and only if
{an3™ < 1, and then use the Ratio or Root Test, whichever applies.)
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3. Suppose the radius of convergence of Zan x" is precisely 4. Which of the following numbers is
n=0
necessarily in the interval of convergence, and why?

4. (a) Write down the power series for , and tell why the radius of convergence is 1.
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(b) Use the fact that e <1 — :U) is e to find the power series for a2 Then determine

the radius of convergence both by using the Ratio Test and by citing the Differentiation Theo-
rem for power series.
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(c) Evaluate Z n <2> . (Hint: The series found in (b) might be helpful.)
n=1

5. (if time)
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(a) Write the power series for e”, and then explain why ze® = Z py
n=0 ’
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(b) By integrating the power series for ze®, show that E 0 m = /O ze® dxr = 1.



